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SUMMARY

In the present report a compressible Navier-Stokes solution procedure
is applied to the flow about an isolated airfoil. Two major problem areas
have been investigated. The first area is that of developing a coordinate
system and an initial step in this direction has been taken. An airfoil
coordinate system obtained from specification of discrete data points has
been developed and the heat conduction equation has been solved in this
system. Efforts required to allow the Navier-Stokes equations to be solved
in this system are discussed. The second problem area is that of obtaining
flow field solutions. Solutions for the flow about a circular cylinder and
an isolated airfoil are presented. In the former case the prediction is
shown to be in good agreement with data.






INTRODUCTION

The prediction of the flow field about isolated airfoils at various
angles of attack has been a subject of great interest to aerodynamicists
over the years. The importance of such flow fields is evident in the design
of aerodynamic machinery. The associated aerodynamic problems vary from a
whole machine to a detailed analysis of some constituent part. To name a
few important problems, it is often necessary to determine <from the flow
field the performance of such components as an airplane wing, a control
surface, a propeller or a helicopter rotor blade. In this context it should
be clear that a reliable method of predicting aerodynamic flow fields is of
great value.

In cases in which the airfoil is at a moderate angle of attack, the
viscous boundary layer will remain attached over most of the airfoil surface;
in these situations, 1lift and moment predictions as well as predictions of the
detailed pressure distributions along the blade surfaces can be made with
inviscid flow calculations such as those of Giesing (e.g., Ref. 1), Giesing,
Kalman and Rodden (Ref. 2) or Bauer, Garabedian and Korn (Ref. 3). If skin
friction drag for steady flows 1s desired, a boundary layer procedure such
as those of Refs. 4 or 5 can be readily performed providing separation does
not occur. For unsteady flows the incompressible procedures of Nash and
Patel (Ref. 6) and Briley and McDonald (Ref. 7) are available. If separation
does occur but the separation region remains small, predictions of the air-
foil viscous layer can still be made as has been demonstrated by Shamroth
and Kreskovsky (Ref. 8) and Kreskovsky, Shamroth and Briley (Ref. 9) who
applied the Briley-McDonald separation bubble calculation method to the
problem of flow about an airfoil section with varying angle of attack.

The above procedures are applicable only in the absence of significant
regions of separated flow. In many cases of practical interest the flow
about the airfoil contains regions of significant separation,and in these
cases procedures based upon an outer inviscid flow calculation which ignores
viscous displacement effects and an inner viscous solution in the immediate
vicinity of the airfoil are inapplicable.

An important example of an airfoil flow field which contains significant
regions of separated flow is the helicopter rotor blade. It is this problem
which has motivated the present study. Under high speed flight conditions
the retreating rotor blades are subjected to a diminished dynamic pressure
and as a result high blade performance requires large 1lift coefficients to
be present over the retreating portion of the rotor disc. These large 1lift
coefficients are generated by placing the blade at large incidence angles



relative to the oncoming velocity field. At these large incidences the
boundary layers developing along the airfoil surface will separate over at
least a portion of the chord. When separation becomes significant, the blade
experiences a deterioration in performance and this deterioration is termed
stall.

Airfoil stall can be divided into two main categories, static stall
and dynamic stall. ©Static stall occurs when an airfoil is placed at a large
incidence angle in a steady stream. This type of stall has been discussed in
detail by McCullough and Gault (Ref. 10). Dynamic stall occurs when the
incidence is a function of time. For example, as the helicopter rotor blade
travels through the rotor disc, it may experience a varying incidence angle.
Over most of the rotor disc the blade will be unstalled, however, stall may
occur over a portion of the disc and over this portion the airfoil performance
will suffer. Dynamic stall differs from static stall in two obvious ways.
First of all, experimental evidence clearly shows that both the maximum 1ift
obtainable and the incidence at which performance first deteriorates are
greater under dynamic conditions than under static conditions (e.g., Ref. 11).
Secondly, although under static conditions 1lift is uniquely related to
incidence, the dynamic stall process has a hysteresis loop associated with
it so that the 1lift depends upon the incidence history. This historical
phenomena makes the dynamic stall process much more difficult to predict
than static stall process.

Despite its complex nature dynamic stall has been the subject of several
recent experimental investigations. For example, the behavior of the leading
edge separation bubble has been investigated by Velkoff, Blaser and Jones (Ref.
12) and Isogai (Ref. 13) 2nd the mechanism of dynamic stall on a NACA 0012 air-
foil has been investigated by McCroskey and Philippe (Ref. 1k), McCroskey,
Carr, and McAlister (Ref. 15) end Parker (Ref. 16). The variation of 1lift and
moment coefficients through the stall regime has been presented in several
works such as those of Liiva (Ref. 11) and Landgrebe and Bellinger (Ref. 17).

Although dynamic stall may occur in a variety of flow situations it
plays a particularly important role in helicopter rotor performance, partic-
ularly since a rotor blade may encounter a continuously varying free stream
velocity and a continuously varying incidence angle as it proceeds around
the rotor. Obviously the blade performance in terms of 1lift and moment
coefficients will depend upon how the blade reacts to its changing environ-
ment. 1In addition, blade fatigue stress, blade flutter and aircraft vibra-
tion will be dependent upon the periodic blade loading and unloading. Thus
the aerodynamic performance, the rotor structural integrity and aircraft
vibration characteristics are all significantly affected by possible dynamic
stall phenomena.
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To date a variety of approaches have been used to analyze and predict
dynamic stall. Since the various approaches have been motivated by different
immediate objectives, the obviocus differences in philosophy which have
appeared are not surprising. A recent review of many of these methods has
been given by McCroskey in Ref. 18. Ham and Garelick (Ref. 19) and Ham
(Ref. 20) have attempted to model dynamic stall by an inviscid process in
which vortices are shed from the airfoil leading edge. Although the theory
has predicted maximum 1ift and moment coefficients during dynamic stall, it
has not predicted the dynamic stall loop. Furthermore, in this approach the
time or incidence at which stall begins either must be assumed arbitrarily
or must be based upon a data correlation. Baudu, Sagner and Souguet (Ref. 21)
also have developed an approach based upon a vortex shedding model.

Other investigators have approached the problem by building semi-
empirical models of the stall process. These models have been motivated by
the need for practical prediction techniques and have proven quite useful
in predicting dynamic stall characteristics. For example, Ericsson and
Reding have developed a procedure which predicts dynamic stall characteristics
by combining static airfoil data with semi-empirical models (Refs. 22 and 23).
Another example of this type of work is that of Lang (Ref. 24) who developed
a prediction procedure which combines a bubble bursting criteria with an
inviseid flow analysis. Although these methods serve a pressing practical
need, their empirical nature dictates that they be used with caution. Still
another approach predicts dynamic stall characteristics from data correlations.
For example, Carta, Commerford and Carlson have related stall characteristics
to the time-incidence history of the airfoil (Ref. 25). However, since this
method is based upon data correlation for specific airfoils in specific types
of motion, it is not clear how this method could be extended either to
alternate airfoil shapes or to other types of motion.

Although the previously mentioned procedures fill an important immediate
need, they are limited by semi-empiricism or dependence upon date correla-
tions. A basic understanding of the stall process or the ability to make
predictions well outside the correlating data base requires more fundamental
approaches and several such approaches have been developed. For example,
the analysis of Scruggs, Nash and Singleton (Ref. 26) treats fully turbulent
boundary layer flow developing under a prescribed pressure gradient obtained
from the full inviscid equations. The analysis has as its main objective
an assessment of the effect of unsteady phenomena upon the trailing edge
separation point. A more comprehensive analysis has been developed by
Crimi and Reeves (Ref. 27) who combined linearized potential flow equations
with boundary layer equations to predict the flow field behavior. While i
this procedure has had some success in predicting 1lift and moment hysteresis
loops through stall, the model has several shortcomings. First, although the
Crimi-Reeves approach uses a finite-difference boundary layer calculation in
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regions of attached flow, it resorts to an integral procedure in the reversed
flow region. 1In addition, the procedure uses a linearized inviscid analysis
and empirical transition and bubble bursting criteria. In a recent work
Shamroth and Kreskovsky (Ref. 8) have developed a weak interaction dynamic
stall analysis which is not limited by integral boundary layer assumptionsg,
semi-empirical bubble bursting assumptions and semi-empirical transition
assumptions. In this work Shamroth and Kreskovsky applied the Briley-
McDonald separated flow finite-difference code (Ref. 7) in conjunction with
the Giesing potential flow code (Ref. 1) to analyze the dynamic stall
problem. Although the procedure's weak interaction limitation prevented

the code from calculating hysteresis loops through stall, the analysis did
predict what appears to be the correct stall mechanism for a NACA 0012 airfoil
oscillating at a Reynolds number of approximately 0.5 x 107. At the time of
the Shamroth-Kreskovsky study it was commonly assumed such an airfoil would
stall as a result of leading edge bubble bursting, however, Ref. 8 predicted
the bubble to remain attached and stall to originate through abrupt separa-
tion of the turbulent boundary layer. This stall mechanism has been
confirmed by the experiments of McCroskey, Carr and McAlister (Ref. 15)

and Parker (Ref. 16),and as pointed out in Ref. 15 such behavior is consis-
tent with the static data of Gregory and O'Reilly (Ref. 28) and Ridder

(Ref. 29).

Despite the fact that both the Crimi-Reeves analysis and the Shamroth-
Kreskovsky analysis approach the problem from a fundamental basis, both analy-
ses are still limited by their treatment of the interaction between the inner
viscous layer and the nominally inviscid flow. The Shamroth-Kreskovsky
analysis does not allow any interaction and thus cannot be applied in regions
of significant viscous separation. Although the Crimi-Reeves analysis
includes an interaction model, this model is based upon a semi-empirically
determined pressure in regions of separated flow. In addition, it should
be recalled that the Crimi-Reeves inviscid analysis is .based upon linearized
theory. These considerations indicate the need for new analyses not limited
by interaction models and an obvious candidate analysis fulfilling this
requirement would be the full Navier-Stokes equations.

With the continued improvements in computers and the continued rapid
advancement in numerical techniques, Navier-Stokes procedures have become an
increasingly attractive alternative for calculating the flow about an
airfoil. Much early work in this area concentrated upon predicting flow
about a circular cylinder and a comprehensive bibliography on this subject
can be found in the recent paper by Coutanceau and Bouard (Ref. 30).

It should be noted that those works mentioned in Ref. 30 include solutions
of both the steady state and time-dependent equations, however, all the
procedures were limited to incompressible flow. More recently, Navier-Stokes
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procedures have been applied to more complex shapes including airfoils
(Refs. 31-32, 3&). In Ref. 31 Mehta and Lavan have investigated the flow
field about an impulsively started airfoil with a finite difference proce-
dure using stream function and vorticity as dependent variables. These
results gave an excellent picture of the starting process. However, the
Mehta-Iavan procedure is limited to incompressible flow and has been applied
only in conjunction with a conformal mapping procedure. In addition, the
large number of relaxation iterations required per time step may give
relatively long running times. According to Ref. 32, the run times for
this method averaged 9.5 minutes of UNIVAC 1108 time per time step. Despite
this relatively long run time, the excellent results of Ref., 31 represent

a strong argument for Navier-Stokes solutions.

In another analysis, Wu and Sampath (Ref. 32) have applied the Wu-
Thompson integro-differential formulation (Ref. 33) to the airfoil problem.
This calculation also has shed light on the impulsively started airfoil
problem, however, it is not easily extendable to compressible flow and to
date it has been formulated and used only for an airfoil which can be mapped
conformally into a circle. 1In addition, the procedure requires continuously
more run time as the rotational portion of the flow field grows. This
makes the procedure less attractive for predicting steady state solutions
than for predicting transients. A different approach has been
taken by Verhoff (Ref. 34) who has applied MacCormack's fully explicit
method (Ref. 35) to the airfoil problem. Unlike the procedures of Refs.

31 and 32, this formulation is compressible, however, being fully explicit
the procedure requires many time steps to convergence leading to relatively
long run times. It is likely that this run time problem could be
alleviated if MacCormack's more recent technique were used (Ref. 36).

Finally, in a recent paper Steger (Ref. 37) has used a viscous analysis
in conjunction with the coordinate generation procedure of Thompson, Thames
and Mastin (Ref. 38) to predict flow about an airfoil. The viscous analysis
is that of Beam and Warming (Ref. 39) which follows Briley and McDonald
(Ref. 40) in combining a Taylor expansion linearization with a Douglas-Gunn
ADI procedure. The major difference in the two approaches lies in the choice
of dependent variables. The same linearization was used with an alternate
ADI approach by Lindemuth and Killeen (Ref. 41). The basic coordinate
generation procedure (Ref. 38) depends upon the solution of an elliptic
set of partial differential equations. Additional modifications are
made in one coordinate direction so that mesh points are concentrated
near the body surface and in the wake region near a specified branch
cut. The branch cut, however, camnot be technically treated as a
branch cut in the usual sense. The problem here occurs because only



function boundary conditions have been applied along the cut; the result is
a cut with tangent discontinuities in the crossing coordinate curves. The
simultaneous application of both function and derivative conditions would
certainly remove this problem. However, it would also require the solution
of a higher order elliptic system: a process which would be costly and
inefficient. By contrast, the methods developed in this study can effi-
ciently and correctly model the branch cut with both function and derivative
specifications.

The work under the present effort represents the first step in
obtaining a general efficient computer code capable of predicting flow
about airfoils of general geometry. The work is an extension of the original
work of Briley and McDonald (Ref. 41) for the numerical method and of Eiseman
(Ref. 42) for the geometry. Although at present only two-dimensional, laminar
flows are considered, the procedure is extendable both to three dimensions
and to turbulent flows.



LIST OF SYMBOLS

Except where dimensions are specified, all quantities in the following
are nondimensional; physical velocities are normalized by ur, density by
py» Dressure by p,u2, dynamic viscosity by p,, and time by (L/u,) where L
is the reference length.

8 Speed of sound; m/sec

A Constant defined in Eq. (13);
Coordinate system parameter, EQq. (15);
Matrix coefficient, Eq. (25b)

b Major to minor axis ratio of ellipse
B Constant defined in Eq. (13);
Coordinate distribution parameter
c Speed of light; m/sec
ds Differential element of arc length
dyi Differential increment of coordinate yi
D Diameter of circular cylinder
Dm,Di Finite difference operators for coordinate ym
qu Momentum equation coefficient, Eq. (13)
2 Multidimensional spatial derivative operator vector
jbm Spatial derivative operator vector associated with coordinate ym
g Coordinate tangent vector field, aiyayi
EgY Momentum equation coefficient, Eq. (12)
F General function, Eq. (20)
nga Momentum equation coefficient, Eq. (13)
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LIST OF SYMBOLS (CONT'D)

Metric tensor coefficient
Inverse metric tensor coefficient
General function, Eq. (20)

Momentum equation coefficient, Eq. (13)

Metric coefficient, orthogonal coordinates
General vector function, Eq. (19)
Momentum equation coefficient, Eq. (13)
Jacobian

Momentum equation coefficient, Eq. (13)

Number of nonlinear equations solved;
Airfoil chord length

Reference length, meters

Momentum equation coefficient, Eq. (13)
Linear operator, Eq. (25c)

Coordinate distribution parameter, Eq. (16)
Major axis of ellipse

Reference Mach number

Momentum equation coefficient, Eq. (13)
Unit normal vector

Static pressure



LIST OF SYMBOLS (CONT'D)

Momentum equation coefficient, Eq. (11)
Coordinate parameter, Eq. (16)

Coordinate distribution function, Eq. (16)
Momentum equation coefficient, Eq. (13)

Reference Reynolds number, p urL/u
T T

Arc length along coordinate yl

Total surface arc length
General vector function, Eq. (19)
Momentum equation coefficient, Eq. (13)

Time;
Coordinate parameter, Eq. (15)

Total temperature

Stress-energy tensor, Eq. (5)

Streamwise cartesian velocity component
Physical velocity component along coordinate yi
Cartesian unit vectors

Transverse cartesian velocity component
Space~time velocity

Covariant velocity component

Contravariant velocity component
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LIST OF SYMBOLS (CONT'D)

Cartesian position vector

Arbitrary computational coordinate
Computational coordinates

Outer loop position vector, Eq. (15)
Spatial differencing parameter, Eq. (29)
TInner loop position vector, Eq. (1L)
Time differencing parameter

Ratio of specific heats, C /C
PV
Kronecker delta

Time increment

Mesh spacing for coordinate Xm
. . m

Mesh spacing for coordinate y

Spatial difference operators, Eq. (29)

Polar coordinate

Dynamic viscosity

. . . . 2

Kinematic viscosity; m /sec

Density

General dependent variable

General dependent variable, Eq. (2L)

Fourth-derivative dissipation coefficient, Eq. (34)



Subscripts

Superscript
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LIST OF SYMBOLS (CONT!'D)

Denotes free stream conditions

Denotes dimensional reference value

Denotes time level n

13



ANATYSIS

The Governing Equations in General Tensor Form

The role of generalized coordinates. - In the numerical solution of
fluid dynamic problems there are many advantages to be gained by judicious
choice of coordinates (eg., Ref. 43). The most obvious advantage is that
the physical boundaries of a flow region can be represented by coordinate
surfaces. This removes the need for fractional cells in general; hence,
the complications and loss of accuracy associated with a boundary inter-
polation are removed. Another advantage is that a uniform numerical method
can be used. The solution can then be performed with a fixed number of
cells in any given direction and with a uniform mesh spacing. The result
is a simplification of the computer logic; hence, a savings in time for both
the computer and the programmer results.

In addition, the coordinate transformation can be constructed to
contain distributions for physical space mesh points. In this context, the
uniform mesh of computational space is simply mapped into a suitably
distributed mesh in physical space. The resolution of large solution
gradients is the major objective in the selection of a coordinate mesh
distribution. A classical example is the resolution of attached boundary
layers. Another more subtle example is the resolution of large gradients
in computational coordinates due to regions of high curvature on the
bounding surfaces. When the transformation contains the mesh point distri-
bution there is no need to construct the apparatus for the discrete approxi-
mation of derivatives on a nonuniform mesh., This results in a savings in
both computer logic and storage. As an illustration, consider the case
where it i1s desired to automate the difference molecule so that the numerical
technique can be changed with a few parameters. Changes, in practice,
usually amount to a selection between forward, backward, or central
differences. For any given direction, three parameters each for first and
second derivatives are needed for second order accurate methods. Thus,
counting 6 parameters for boundary conditions, a total of 12 parameters
are needed for each ADI direction. This compares favorably with the direct
approximation of derivatives on a nonuniform mesh where the requirement is
for 6N parameters on an ADI direction of length N.

A further advantage of the generalized coordinate approach is that for
a given problem coordinates can be selected from a large class of coordinate
systems. In the process of sorting through the various possible coordinate
systems two criteria arise. First, the new coordinates must lead to a real
simplification; secondly, the coordinates must be easily generated.
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Since bounding surfaces usually become coordinate surfaces the first criter-
ion is almost always met. The remaining complexity in the first criterion
is directly measured by consideration of the metric tensor (gij) which is
obtained from the expression for the fundamental element of arc length

(ds)? = 9%j dy’' dyj (1)

Specifically, an increase in the number of nontrivial elements in the
expression of the metric tensor is accompanied by a corresponding increase
in the number of terms in the equations of motion. The result is an
increase in the computational work that is needed after the coordinates
have been generated along with the necessary metric data. The second
criterion, unlike the first, is most often neglected. The unfortunate
result is that there is often more work involved in making the coordinates
than in solving the original problem with a less efficient satisfaction of
the first criterion. In fact, both of the criteria above usually are at
opposite polarities in complexity. The prudent selection of coordinates is
then a balance between these criteria.

The criteria for selecting a suitable system of coordinates can be used
to compare the various classes of coordinate systems and to evaluate the
relative utility of each. The evaluation will start with conformal trans-
formations and continually enlarge the class until the most general time-
dependent coordinates are reached.

For conformal transformations the metric tensor is simply given by a
scalar multiple of the identity. That is, gj3 = h(¥)8;; where the Kronecker
symbol éij vanishes unless i = j in which case it is unity. From this
expression it is easy to show that h = (J‘Z)l/n where J is the Jacobian of
the n-dimensional conformal transformation. The simplicity of the metric
leads to very simple equations of motion at the expense of greatly
restricting the class of easily obtained transformations. These trans-
formations are generally obtained by the solution of partial differential
equations which may in itself be costly. In addition, the control over
the mesh distributions is indirect at best. In two dimensions, however,
conformal transformations have been successfully used on many occasions.
Here the metric is given by gij = IJI 5ij’ and the theory of functions of
one complex variable is a powerful tool which can be used. When the
boundaries of the flow region can be matched with well-known conformal
transformations there is nothing that can effectively compete with this
way of generating coordinates.

In a number of cases boundaries can be matched through a sequence of
well-known transformations. However, in most cases of practical importance
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the boundaries are too complicated; and consequently, cannot be simply
defined as desired. Thus, one is led to approximate methods. For the
general airfoil shapes there is the method of Theodorsen (Ref. Ll) and along
similar lines there is the more recent work of Ives (Refs. 45, L6) which
employs the Fast Fourier Transform. Both techniques map airfoils to near
circles through a sequence of well-known maps; and then use a Fourier type
of approximation. The Schwartz-Christoffel transformation may be used to
approximate arbitrary shapes with piecewise linear curves. This technique
works best for simply connected regions where no branch cuts are needed. A
basic limitation in this method is the poor representation of wall curvature.
This can be partially resolved by using the Schwartz-Christoffel transfor-
mation with rounded corners as in Henrici (Ref. 4T7). But then there is
little control over the rounding process. Conformal mappings in higher dimen-
sions also exist (cf., Ref. 48) but are generally difficult to construct.

When conformal mappings become overly difficult to construct, it is
best to consider the slightly larger class of orthogonal transformations.
For orthogonal transformations the metric tensor is given by the diagonal
form g § = [hi(f)]eéij. Note that, unlike the conformal transformations,
the diagonal entries of the metric can be different. The deviation from
conformality can now easily be measured by an examination of the ratios of
the functions hy as now is demonstrated by an explicit geometric interpre-
tation of the metric. For a position vector field X, the vector field €; =
(8%)/(dyl) is the natural tangent vector field along coordinate curves
generated by holding the remaining coordinates yl,..., yi'l, yi+l,..., v
constant. It is often common practice to use the operator notation where
the position vector field is omitted. By an application of the chain rule,
the fundamental element of arc length can be expanded as

—~ . [ ox : X .
(ds)? = dx- x<§"—| dy')-(a—xj— dy’)
oX ax
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and hence, by linear independence gij = Ei-Ej. Now note that the metric is
orthogonal if and only if the 3& and @ are perpendicular when i # j. But
perpendicularity of €; and Ej at a point is equivalent to the perpendicular
crossing of the associated coordinate curves at the point in gquestion.
Consequently the notion of orthogonality in terms of coordinate curves is
equivalent to the metric expression above. In addition the functions hy

are easily seen to be equal to the lengths of the corresponding natural
tangent vectors E&. When the lengths are equal it is clear that the trans-
formation is conformal. However, as the ratios of the h; deviate from unity,
the transformation smoothly deviates from conformality.

With fewer constraints on the metric, the selection of coordinates
from the class of orthogonal transformations is slightly less restrictive
than a selection from the class of conformal transformations. The process
of coordinate generation is usually accomplished by geometric methods. The
desire is to create families of mutually orthogonal coordinate surfaces. As
a starting point, one usually begins the process with a given family of
surfaces that are generated in some way from the boundary of the flow
region. Families of orthogonal surfaces are then to be constructed to
complete the specification of coordinates. The first family of surfaces
defines a unique normal vector field. This vector field is then extended
to a smooth field of orthogonal frames which must be integrated to generate
the orthogonal coordinate surfaces. The condition for integrability is
contained in the Frobenius Theorem (Ref. 49). The computational process
generally leads to the solution of a system of differential equations. This,
however, is often a difficult exercise just to obtain orthogonal coordinates.

General nonorthogonal coordinates are often preferable to orthogonal
coordinates since the mesh distributions can be controlled and since the
coordinates are considerably easier to generate. The construction process
is usually geometric and generally does not rely on the solution of
differential equations. Certain methods, however, are not entirely based
upon the geometry, but upon the solution of a system of elliptic partial
differential equations (e.g., Ref. 38). Such methods are generally of
comparable efficiency with those of the conformal type. The entirely
geometric methods usually can be used with distribution functions replacing
independent variables so that mesh point distributions are used directly.
Such is generally not the case for other methods. The considerable improve-
ment in flexibility associated with the class of general spatial coordinates
does come with a small price. Specifically, the metric tensor has
generally nontrivial off diagonal elements. As with the difference between
orthogonal and conformal coordinates, the deviation of the general non-
orthogonal coordinates from orthogonality can be measured directly from the
metriec. That is, the cosine of the angle between distinct coordinate curves
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is given by the dot product of the associated unit tangent vectors. The
cosine of the angle between curves i and j can be written as:

(

Thus when g3 vanishes for distinet i and j the coordinates are orthogonal,
and when 8ij increases from O the coordinates smoothly deviate from
orthogonality with the deviation given by the arc cosine of Eq. (3). Local
regions of nearly orthogonal coordinates can then be constructed within

a nonorthogonal system. This can be used to some advantage in regions where
large solution gradients are expected. For example, boundary layer

regions may be treated with nearly orthogonal coordinates which smoothly
deviate from orthogonality as largely inviscid regions are approached. An
illustration of this type of construction is given in Ref. L42.

—
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When time-dependent problems are considered the general nonorthogonal
spatial coordinates can be used provided that the boundaries of the flow
region are rigidly fixed relative to the region. However, i1f the region
changes shape as a function of time, then the purely spatial coordinate
analysis above is no longer valid unless special precautions are taken.

In terms of the metric the pseudoriemannian metric from special relativity
is used. Here, the cartesian frame xl, x2, x3 is extended to a Lorentz
frame by the addition of a time-like coordinate %0 (Refs. 50-54). The
fundamental expression for arc length in space-time is

(ds)* =g, dy' dyl &)

where the summation is now from O to 3.

In this context, the classical equations of motion are obtained from
the vanishing divergence of the stress-energy tensor and a subsequent
approximation for slowly moving fluids. This is discussed at more length
in the following section. DPossible applications for such coordinate systems
include ducts with moving walls such as blood flow problems as well as
flutter problems where airfoils may be oscillating relative to each other.
As special cases the classical Eulerian and Lagrangian coordinates as well
as everything in between are obtained.

The equations of motion for a wviscous fluid. - The equations of motion
of a viscous fluid are given by a divergence free stress-energy tensor
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o — k k
k:Pka+(p+—%+dev)8i—}Lgm(vmn+VmJ) (5)

(Refs. 50-54) where ¥ is a space-time velocity, v; are covariant components,
are contravariant components, | is viscosity, p is pressure, p is density,
commas denote covariant derivatives, gtk is the inverse metric, and 85 is the

Kronecker delta. In tensor analyS1s, the term contravariant refers to the
components of a vector in the basis el, covariant, to the components of the
vector in the basis @) defined by the duality condition e -8 = 63 Here the
Latin indices generally vary from O to 3 and repeated 1nd1ces arelto be summed
(Einstein summation convection). The metric is generated from a local ILorentz
frame and generally depends upon the velocity of light ¢. Since the veloc-
ities in classical mechanics are much less than the velocity of light, the
Navier-Stokes equations can be retrieved as an approximation to the equations

Tk =0 (6)

when terms of order c~2 relative to unity are removed. The advantage
inherent in the approximation of the above special relativistic equation

is that the Navier-Stokes equations are expressed in a manner independent

of any space-time coordinate system and are given a metric structure induced
from the relativistic structure. The metric structure contains the classical
Coriolis and centrifugal force effects in a clean and concise manner. That
is, in addition to spatial changes, the metric contains all of the time-
dependent variations of the coordinate transformations. The details of

the approximation were presented in McVittie (Ref. 50) for inviscid flows
and in Walkden (Ref. 52) for viscous flows. All quantities in the following
equations are nondimensional; physical velocities are normalized by u,
density by pr, pressure by ppu,~, dynamic viscosity by Mp, and time by
(L/u,) where L is the reference length. The resulting equations for viscous
flow (Ref. 52) are

9 (pd) + 9O (pvBn)=0
= (P)+ayﬂ- pvPy (7)

for i = 0 and
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for 1 = 1, 2, 3 where J is the Jacobian, The equation for i = 0 can be
identified as the continuity equation; the equations for 1 < i < 3, as the
respective momentum equations. Here, 1 = O represents the time-like direction
and Greek indices o, B, £, W represent space-like directions as they vary only
from 1 to 3. The energy equation, also presented in Ref. 52, can often be
replaced with

p=P[A+Bgij vivj] (9)

under an assumption of constant total temperature, where A = To/YMrg and

B = =(y-1)/2y. An expansion of the momentum equation leads to a system of the
form

0 ( i dp B ) P w ovY
— (Jgaipv) + K =+ FL — (ovivl) + L
31 ai P PGS ija ayﬁ P av ayw
02 Y (lO)
Y ..
€ — v . B . 1y} =
+ Da)’ayﬁdy‘ + Rgp + Igyv’ + Mgg pv™ + GaIJ pV'V Sa

which is suitable for automatic computation. For a time-independent metric,
this result reduces to the Navier-Stokes equations in a fixed frame
(Ref. 55). By use of the intermediate quantities

B

Q) =87 —g,09% (11)
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The Coordinate System

An effective coordinate system for the two-dimensional isolated airfoll
problem can be generated from two loops (or arcs) of data. The two loops first
are given a parameterization t in a mamner which causes both a distribution
of loopwise points and an aligmment of points between the two loops. Here,
the inner loop is the airfoil; the outer loop, the ouber computational
boundary. The coordlnate system is then generated by a linear interpolation
between loops. If a(t) denotes an outer loop; B(t), an inner loop; and R(r),

a distribution function with independent variable O < r < 1; then the
coordimate transformation is given by

X=8+R(a—=PB) (1)

where the cartesian location ¥ is E when R = O and @ when R = 1. The

metric data for this coordinate system is presented in Ref. 42 where the loops
are constructed for a cascade of airfoils rather than for an isolated airfoil.
Although the coordinate transformation, Eq. (14), is ‘representative of a
large class of transformations, it is instructive to specialize our
discussion at least initially for purposes of illustration. Thus, in most

of the discussion, it will"be assumed that the airfoil has no cusps and is
convex; minor modifications can be employed for cusps and regions of
concavity. With convexity, an orthogonal coordinate system can be generated:
if each interpolation between inner dand outer loop points 1s over a line
normal to the airfoil surface. This can be accomplished by generating the
outer computational boundary @ as a uniform dilation along airfoil normal
lines, That is, if n(t) is the outward unit normal vector field to the air-
foil B(t), then the outer computational boundary is given by

alt) =B (1) + Af(1) (15)

for some fixed distance A. The parameter t, as a loopwise distributlon,

can easily by specified as the arc length of some intermediate loop B(t) +
Bn(t) where O < B < A. The parameter t can be viewed as a label for
corresponding inner and outer loop points. This is analogous to inner and
outer points being displayed as sequences each with an index t. In taking
the analogy one step further, the pseudoradial curves correspond to the
lines joining inner and outer loop points with the same index. As B is
adjusted from O to A the distribution varies from airfoil arc length towards!
outer loop arc length. Under a uniform discretization of t, this will

cause points to cluster around the airfoil regions of higher curvature
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(notebly at leading and/or trailing edges) as A is approached. To complete
the specificaiton of the coordinate transformation, Eq. (1l4), a definition of
R(r) is needed. The function R(r) is used to specify a distribution of
points along the coordinate curves normal to the airfoil. Commonly, it is
desired to resolve a boundary layer near the airfoil surface. For this
purpose, the distribution

tanh D

tanh D{l-r) ]
(16)

R(r)=mr + (l—m){l—

is most effective (Ref. 42). Here, a slope m is selected to determine a
suitable uniform boundary layer mesh corresponding to the line R = mrj; the
level of adherence to this line is a result of the selected damping factor D.
As D is increased from 0, the distribution will depart from global uniformity
and more closely follow the given line before increasing to the end point
R{1) = 1. By construction, the only inflection point occurs at R(1) = 1.

Due to the inflection point condition, the distribution leaves an almost
uniformly distributed boundary layer region with a continuously expanding
grid as r approaches 1.

Once the coordinate transformation is established, the numerical
solution for a desired flow field can be attempted. The mesh in the
computational domain is given by uniform discretizations of both r and t.
The array of mesh points here is a rectangular formation which is consider-
ably simpler than the corresponding array in physical space. The advantages
of this formulation are clear.

In certain cases the coordinate system can be constructed directly from
an analytically specified airfoil surface. For example, consider an airfoil
in the shape of an ellipse. The analytic specification is given by

E(e)— M(coseﬁ\,+sin 9{1\2) (17)
i+(b2 =) sin 8

for 0 < 6 < 2w and where Gl and 92 are the standard cartesian unit vectors.
The major axis is denoted by M; the ratio of major to minor axes, by b. If
the outward expansion along the unit normals is sufficiently large (as is
often the case), then the outer loop is nearly circular. As such, the
distribution t determined by the outer loop arc length is, for all practical
purposes, proportional to the angles formed by the outward unit normals

and the x - axis. With a little algebra, it can be shown that
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6 =tan™! (ﬂ) | (18)
b2

which upon substitution leads to the desired parametric form of the airfoil

B(t).

Generally, the coordinate construction must be done numerically. The

process is broken down into a sequence of operations; namely., the determina-
tion of airfoil normals, the selection of B, the construction of inner and
-outer loops, and finally the generation of coordinates from R and the two
loops. In more detail these operations are tabulated as follows:

(a)

Generate the airfoil surface R(s) where s is an arc length
parameterization.
Construct the unit vector field Q(s).
Choose B such that o= B= A

. . > A
Construct the intermediate loop YB(S) = B(s) + B n(s)

Store the paired points (g(s), ?B(S))
Reparameterize ?B by its arc length t to obtain ?ﬁ(t)

From the pairing in (e), reparameterize the airfoil surface to
obtain B(t)

Generate the outer boundary from Eq. (15)
Choose the number; N, of loopwise mesh points
If t varies from o to some value T, then set At = T/{(N-1)

For each t = nAt, evaluate inner and outer loops as n = 0,..., N-1

Choose the parameters m and D which control the desired resolution
for the boundary layer region

Choose the number, M, of mesh points in the pseudoradial direction

For each r = m/(M-1), evaluate the radial distribution (Eq. (16))
form=o0, 1,,.., M-1

Generate an NxM coordinate grid from Eq. (14), step (k) and step (n)



If the airfoil data is not smooth, then a least squares curve fit will be
needed to determine the normals (Ref. 56). Further curve fits will be needed
to construct inner and outer loops. If, however, B is not too large, then
inner and outer loops can be constructed directly from a fit to the inter-
mediate curve corresponding to B. Since the intermediate curve has an arc
length parameterization it is usually easier to obtain an accurate fit. In
any case, it is only necessary to fit one curve; the others can be obtained
as expansions or contractions along the normal lines.

The method of coordinate construction presented here can also be
adapted to the specific high Reynolds number problem considered by Steger
(Ref. 37). 1In that problem the mesh was generated to resolve a flow field
about an isolated airfoil with a long but narrow wake region. For this case,
the leading edge region on the airfoil is considered to be bounded by the
points above and below the airfoil where the outward unit normal vector first
becomes vertical. The unit vector field ﬁ(t) is now chosen to coincide with
the outward unit normal vector in the leading region, to point vertically
outward in the remaining airfoil regions, and in continuation to point
vertically away from a horizontal branch cut in the wake region. The résult
is two arcs of data rather than two loops of data. As before, the distribu-
tion t is determined by the arc length of an intermediate arc. The general
construction and analysis of two loop (or arc) coordinate systems is given
in Ref. L2, There the analysis includes coordinate stretches which are
applicable to the wake region where an expanding mesh may be desired. An
illustration of this coordinate system is given in Fig. 1.

The MINT Procedure

One of the major obstacles to the routine numerical solution of the
multi-dimensional compressible Navier-Stokes equations is the large amount
of computer time generally required, and consequently, efficient computa-
tional methods are highly desirable. Most methods for solving the compres-
sible Navier-Stokes equations have been based on explicit difference
schemes for the unsteady form of the governing equations and are subject to
one or more stability restrictions on the size of the time step relative to
the spatial mesh size. These stability limits usually correspond to the
well known Courant-Friedrichs-Lewy (CFL) condition and, in some schemes,
to an additional stability condition arising from viscous terms. In one
dimension, the CFL condition is At < Ax/(|u| + a), and the viscous stability
condition is At < (Ax)2/2v, where At is the time step, Ax is the mesh size,
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u is the velocity, a is the speed of sound, and v is kinematic viscosity.
These stability restrictions can lower computational efficiency by imposing
a smaller time step than would otherwise be desirable. Thus, a key dis-
advantage of conditionally stable methods is that the maximum time step is
fixed by the spatial mesh size rather than the physical time dependence or
the desired temporal accuracy. In contrast to most explicit methods,
implicit methods tend to be stable for large time steps and hence offer

the prospect of substantial increases in computational efficiency, provided
of course that large time steps are acceptable for the physical problem of
interest and that the computational effort per time step is competitive
with that of explicilit methods. 1In an effort to exploit these potentially
favorable stability properties, an efficient implicit method based on
alternating-direction differencing techniques was developed by Briley and
McDonald (Ref. 40).

This method was subsequently designated the Multidimensional Implicit
Nonlinear Time-dependent (MINT) solution procedure. The MINT method was
further developed and applied to both laminar and turbulent duct flows by
Briley, McDonald and Gibeling (Ref. 57). Subsequently, a three-dimensional
compressible Navier-Stokes combustor flow analysis employing the MINT
procedure was developed by Gibeling, McDonald and Briley (Ref. 58) and this
procedure was then employed by Ievy, et al., (Ref. 59) to determine the
feasibility for computing a turbulent shock-wave boundary layer interaction
with an implicit method.

Outline of method. - The MINT procedure has been previously described
in Refs. 40 and 57, however, the description will be repeated here for
completeness. The method can be briefly outlined as follows: the governing
equations are replaced by an implicit time difference approximation, option-
ally a backward difference or Crank-Nicolson scheme. Terms involving
nonlinearities at the implicit time level are linearized by Taylor expansion
about the solution at the known time level, and spatial difference approxi-
mations are introduced. The result is a system of multidimensional coupled
(but linear) difference equations for the dependent variables at the
unknown or implicit time level. To solve these difference equations, the
Douglas-Gunn (Ref. 60) procedure for generating alternating-direction
implicit (ADI) schemes as perturbations of fundamental implicit difference
schemes is introduced. This technique leads to systems of coupled linear
difference equations having narrow block-banded matrix structures which
can be solved efficiently by standard block-elimination methods.

The method centers around the use of a formal linearization technique
adapted for the integration of initial-value problems. The linearization
technique, which requires an implicit solution procedure, permits the
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solution of coupled nonlinear equations in one space dimension (to the -
requisite degree of accuracy) by a one-step noniterative scheme. Since

no iteration is required to compute the solution for a single time step,

and since only moderate effort is required for solution of the implicit
difference equations, the method is computationally efficient; this
efficiency is retained for multidimensional problems by using ADI techniques.
The method is also economical in terms of computer storage, in its present
form requiring only two time-levels of storage for each dependent variable.
Furthermore, the ADI technique reduces multidimensional problems to sequences
of calculations which are one-dimensional in the sense that easily-solved
narrow block-banded matrices associated with one~dimensional rows of grid
points are produced. Consequently, only these one-dimensional problems
require rapid-access storage at any given stage of the solution procedure,
and the remaining flow variables can be saved on auxiliary storage devices
if desired.

Although present attention is focused on the compressible Navier-Stokes
equations, the numerical method employed is quite general and is formally
derived for systems of governing equations which have the following form:

OH (P )at = D(P) +S(P) (19)

where ¢ is a column vector containing £ dependent variables, H and S are
column vector functions of ¢, and Dis a column vector whose elements are
spatial differential operators which may be multidimensional. The generality
of Eq. (19) allows the method to be developed concisely and permits various
extensions and modifications (e.g., noncartesian coordinate systems,
turbulence models) to be made more or less routinely. It should be empha-
sized, however, that the Jacobian 8H/8¢ must usually be nonsingular if the
ADI techniques as applied to Eq. (19) are to be valid. A necessary condition
is that each dependent variable appear in one or more of the governing
equations as a time derivative. An exception would occur if for instance,
a variable having no time derivative also appeared in only one equation,

so that this equation could be decoupled from the remaining equations and
solved a posteriori by an alternate method. As a consequence, the present
method is not directly applicable to the incompressible Navier-Stokes
equations except in one dimension, where ADI techniques are unnecessary.
For example, the velocity-pressure form of the incompressible equations has
no time derivative of pressure, whereas the vorticity-stream-function form
has no time derivative of stream function. For computing steady solutions,
however, the addition of suitable "artificial" time derivatives to the
incompressible equations, as was done in Chorin's (Ref. 61) artificial
compressibility method, would permit the application of the present method.
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Alternatively, a low Mach number solution of the present velocity-density
formulation of the compressible equations can be computed.

Linearization technique. - A number of techniques have been used for
implicit solution of the following first-order nonlinear scalar equation in
one dependent variable ¢(x,t):

dp/ ot =F(p) acle)/ox (20)

Special cases of Eq. (20) include the conservation form if F(¢) = 1, and
quasi-linear form if G(¢) = ¢. Previous implicit methods for Eq. (20)
which employ nonlinear difference equations and also methods based on two-
step predictor-corrector schemes are discussed by Ames (Ref. 62, p. 82)
and von Rosenburg (Ref. 63, p. 56). One such method is to difference
nonlinear terms directly at the implicit time level to obtain nonlinear
implicit difference equations; these are then solved iteratively by a
procedure such as Newton's method. Although otherwise attractive, there
may be difficulty with convergence in the iterative solution of the non-
linear difference equations, and some efficiency is sacrificed by the need
for iteration. An implicit predictor~corrector technique has been devised
by Douglas and Jones (Ref. 64) which is applicable to the quasilinear case
(G = ¢) of Eq. (20). The first step of their procedure is to linearize the
equation by eyaluating the non-linear coefficient as F(o1) and to predict
values of ¢n+§ using either the backward difference or the Crank-Nicolson
scheme. Values for ¢P*1l are then computed in a similar menner using F(¢212)
and the Crank-Nicolson scheme. Gourlay and Morris (Ref. 65) have also
proposed implicit predictor-corrector techniques which can be applied to
Eq. (20). 1In the conservative case (F=1), their technique is to define G(¢)
by the relation G(¢) = ¢G(9) when such a definition exists, and to evaluate
(¢™*1) using values for ¢+l computed by an explicit predictor scheme. With
é thereby known at the implicit time level, the equation can be treated as
linear and corrected values of ¢n+l are computed by the Crank-Nicolson scheme.

A technique is described here for deriving linear implicit difference
approximations for nonlinear differential equations. The technique is based
on an expansion of nonlinear implicit terms about the solution at the known
time level, t", and leads to a one-step two-level scheme which, being linear
in unknown (implicit) guantities, can be solved efficiently without iteration.
This idea was applied by Richtmyer and Morton (Ref. 66, p. 203) to a scalar
nonlinear diffusion equation. Here, the technique is developed for problems
governed by £ nonlinear equations in £ dependent variables which are func-
tions of time and space coordinates. Although the present effort concen-

trates upon two spatial dimensions and time, the technique will be described
for the three-dimensional, unsteady equations.
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The solution domain is discretized by grid points having equal spacings
in the computational coordinates, Ayl, Ay2 and Ay3 in the y1, y© and y3
directions, respectively, and an arbitrary time step, At. The subscrlgts
i, j, k and superscript n are grld point indices_assogciated w1th y s ¥ » y3
and t, respectively, and thus ®1’J x denotes ¢(yi, y?, yg, t ) It is assumed
that the solution is known at the n level, t', and isS desired at the (n+l)
level, th+l, At the risk of an occasional ambiguity, one or more of the
subscrlpts is frequently omitted, so that ¢B is equivalent to ¢1 L3,k

The linearized difference approximation is derived from the follow1ng
implicit time-difference replacement of Eq. (19): :

(21)

+1-8)[2 ") +s"]

(Hn+'—Hn)/Af=B[E(¢n+I)+sn+']

where, for example, gl = H(¢"*1). The form of D and the spatial differenc-
ing are as yet unspecified. A parameter (O < B < 1) has been introduced so
as to permit a variable centering of the scheme in time. Equation (21)
produces a backward difference formulation for B = 1 and a Crank-Nicolson
formulation for B = 3.

The linearization is performed by a two-step process of expansion about
the known time level t® and subsequent approximation of the quantity
(8¢ /0t )"At, which arises from chain rule differentiation, by (et gn).
The result is

HPH = 1" +(0H/04)" ("' -9M) + 0 (aN? (228)
s"H ="+ (as/8)" (" T -9 ™ +0 (AN (22p)
D™D = D" +Ha D /o) (™ —pM +0(A1)? (22¢)

The matrices 8H/8¢ and BS/8¢ are standard Jacobians whose elements are
defined, for example, by (8H/8¢)q = 8H /8¢ The operator elements of

the matrix 8D/9¢ are similarly ordered, i.e., (8fb/8¢)q = ajbq/8¢r; however,
the intended meaning of the operator elements requires some clarification.
For the gth row, the operation (89 /8¢)n (6™ - ¢M) is understood to mean
that {8/0tD_ [¢(x,y,z, )} 2 At is computed and that all occurrences of
(8¢r/8t)n arising from chain rule differentiation are replaced by
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(@21 - ¢2)/As.

After linearization as in Egs. (22), Eq. (21) becomes the following
linear implicit time-differenced scheme:

(OH/a)™ ("' =M /At =D ($M) +S" + B (3D /¢ +95/3¢)"(¢"HI-9") (23)

Although H is linearized to second order in Eq. (22a), the division by
At in Eq. (21) introduces an error term of order At. A technique for
maintaining formal second-order accuracy in the presence of nonlinear time
derivatives is discussed by McDonald and Briley (Ref. 40), however, a three-
level scheme results. Second-order temporal accuracy can also be obtained
(for B = 3) by a change in dependent variable to $ = H(¢), provided this

is convenient, since the nonlinear time derivative is then eliminated.

The temporal accuracy is independent of the spatial accuracy.

On examination, it can be seen that Eq. (23) is linear in the quantity
(el _ 1) and that all other quantities are either known or evaluated at
the n level. Computationally, it is convenient to solve Eq. (23) for
(¢n*+1 _ ¢n) rather than ¢"*1. This both simplifies Eq. (23) and reduces
roundoff errors, since it is presumably better to compute a small O(At)
change in a 0(1) quantity than the quantity itself. To simplify the
notation, a new dependent variable ¢ defined by

V=¢-—gpn (2k)

is introduced, and thus wn+l = o+l _ ¢%, and YU = 0. It is also convenient
to rewrite Eq. (23) in the following simplified form:

(a+ At 2)v "t = Ay [_?3 (¢")+5“] (25a)

where the following symbols have been introduced to simplify the notation:

A= (AH/3P)" —BA1ES/IP)" (25b)

L=-B(32/9¢)" (25¢)
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It is noted that /(Y¥) is a linear transformation and thus ./(0) = 0.
Furthermore, if D(¢) is linear, then L(y) = - D(Y).

Spatial differencing of Eq. (25a) is accomplished simply by replacing
derivative operators such as 8/9y™, 82/5yM8y™ by corresponding finite
difference operators, Dy, D . Henceforth, it is assumed that 2 and /L
have been discretized in this manner, unless otherwise noted.

Before proceeding, some general observations seem appropriate. The
foregoing linearization technique assumes only Taylor expandability, an
assumption already implicit in the use of a finite difference method.

The governing equations and boundary conditions are addressed directly as

a system of coupled nonlinear equations which collectively determine the
solution. The approach thus seems more natural than that of making ad hoc
linearization and decoupling approximations, as is often done in applying
implicit schemes to coupled and/or nonlinear partial differential equations.
With the present approach, it is not necessary to associate each governing
equation and boundary condition with a particular dependent variable and
then to identify various '"nonlinear coefficients” and "coupling terms"
which must then be treated by lagging, predictor-corrector techniques,

or iteration. The Taylor expansion procedure is analogous to that used in
the generalized Newton-Raphson or quasi-linearization methods for iterative
solution of nonlinear systems by expansion about a known current guess of
the solution (e.g., Bellman & Kalaba, Ref. 67). However, the concept of
expanding about the previous time level apparently had not been employed to
produce a noniterative implicit time-dependent scheme for coupled equations,
wherein nonlinear terms are approximated to a level of accuracy commensurate
with that of the time differencing. The linearization technique also permits
the implicit treatment of coupled nonlinear boundary conditions, such as
stagnation pressure and enthalpy at subsonic inlet boundaries, and in prac-
tice, this latter feature was found to be crucial to the stability of the
overall method (Refs. 4O and 57).

Application of alternating-direction technigues. - Solution of Eq. (25a)
is accomplished by application of an alternating-direction implicit (ADI)
technique for parabolic-hyperbolic equations. The original ADI method was
introduced by Peaceman and Rachford (Ref. 68) and Douglas (Ref. 69);
however, the alternating-direction concept has since been expanded and
generalized. A discussion of various alternating-direction techniques is
given by Mitchell (Ref. 70) and Yanenko (Ref. 71).

The present technique is simply an application of the very general
procedure developed by Douglas and Gunn (Ref. 60) for generating ADI schemes
as perturbations of fundamental implicit difference schemes such as the
backward-difference or Crank-Nicolson schemes.
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For the present, it will be assumed that D(¢) contains derivatives of
first and second order with respect to yl, vy~ and y“, but no mixed deriva-
tives. In this case, V) can be split into three operators, :bl, 552, V)
associated with the yl, y and y3 coordinates and each having the functional
form D, = 4(p, 8/ay™, 92 /oymay™). Equation (25a) then becomes

[A+At(.[| +/, + ./ )]4/“+'= At[(:7>I +.%2+.‘2>3)¢“+s"] (26)

Recalling that /(™) = 0, the Douglas-Gunn representation of Eq. (26) can
be written as the following three=-step solution procedure:

(a+At 2, )\P*=At[( D, +2,+ 23)¢"+s“] (272)
(A+At L )** =py* (270)
(A+At L)Y T =ay*” (27¢c)

where w* and w** are intermediate solutions. It will be shown subsequently
that each of Egs. (27) can be written in narrow block-banded matrix form
and solved by efficient block-elimination methods. If ¢* and ¢**
eliminated, Egs. (27) become

(A+at 2, ) A" (A+AL L) A~ (a+ ot £, = At [(2, +32,+32,) o"+s"] (28)

If the multiplication on the left-hand side of Eq. (28) is performed, it
becomes apparent that Eq. (28) approximates Eq. (26) to order (At)2.
Although the stability of Egs. (27) has not been established in circum-
stances sufficiently general to encompass the Navier-Stokes equations, it
is often suggested (e.g., Richtmyer & Morton, Ref. 66, p. 215) that the
scheme is stable and accurate under conditions more general than those
for which rigorous proofs are available. This latter notion was adopted
here as a working hypothesis supported by favorable results obtained in
actual computations (e.g., Refs. 40O, 57-59).

A major attractlon of the Douglas-Gunn scheme is that the intermediate
solutions ¢* and.w are con31stent approx1matlons to wn+l Furthermore,
for steady solutions, Yo = vF = ™ — Yl independent of At. Thus,
physical boundary conditions fornpn+1 can be used in the intermediate
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steps without a serious loss in accuracy and with no loss for steady
solutions. In this respect, the Douglas-Gunn scheme appears to have an
advantage over locally one-dimensional (LOD) or "splitting" schemes, and
other schemes whose intermediate steps do not satisfy the consistency
condition. The lack of consistency in the intermediate steps complicates
the treatment of boundary conditions and, according to Yanenko (Ref. 71,
p. 33), does not permit the use of asymptotically large time steps. It is
not clear that this advantage of the Douglas-Gunn scheme would always
outweigh other benefits which might be derived from an alternative scheme.
However, since the ADI scheme can be viewed as an approximate technique
for solving the fundamental difference scheme, Eq. (25a), alternate techni-
ques can readily be used within the present formulation.

It is worth noting that the operator D can be split into any number
of components which need not be associated with a particular coordinate
direction. As pointed out by Douglas and Gunn (Ref. 60), the criterion
for identifying sub-operators is that the associated matrices be "easily
solved" (i.e., narrow-banded). Thus, mixed derivatives can be treated
implicitly within the ADI framework, although this would increase the
number of intermediate steps and thereby complicate the solution procedure.
Finally, only minor changes are introduced if, in the foregoing development
of the numerical method, H, jb, and S are functions of the spatial
coordinates and time, as well as ¢.

Solution of the implicit difference equations. Since each of Egs. (27)
is implicit in only one coordinate direction, the solution procedure can
be discussed with reference to a one-dimensional problem. TFor simplicity,
it is sufficient to consider Eq. (27a) with 552, :53 = 0. Consider the
following three-point difference formulas:

om¢> s[aA_ +(|—a)A+]¢/Axm= (aqb/ax'm)i+o [Axnzﬁ(a -1/2) Axm] (29a.)
D2 =(A, AP/ (Axy)® = (a%b/0x7)+0lAxD) (29b)

for a typical computational coordinate XKy - Here, A_ = ®; - D1.1> A4_5
$541 - ¢;, and a parameter o has been introduced (0 < @ < 1) so as to
permit continuous variation from backward to forward differences. The
standard central difference formula is recovered for o« = £ and was used

for all solutions reported here.
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As an example, suppose that the qth component of the vector operator :bm
has the form

2
Drngl$ )= Fl{$) 55 Gglg) +FJ (4,)—"—“: Gogl$) (30)

where F and G are column vector functions having the same (but an arbitrary
number) of components; FL denotes the transpose of F. The form of Eq. (30)
permits governing equations having any number of first and second spatial
derivative terms. Then,

0dmq _ 9D

96 3G, OFig1 e
At ~ mq(¢n+l ¢n)5 £T d iq , 9719 q I _ n
ot EP ['q %y, 0  ax, a¢] ¢
2 36 926G, OF (31)
T 0 29 2q 2q n+| n
+[F2q axg 9d¢ * dx3, acl:] A

It is now possible to describe the solution procedure for Eq. (27a)
for the one-dimensional case with ibm given by Eq. (30) and difference
formulas given by Eq. (29). Because of ghe spatial difference operators,
D, and D, Eq. (27a) contains w 15 ¥y end Ys,15 consequently, the
system of linear equations generated by writing Eq. (27a) at successive
grid points (x,); can be written in block-tridiagonal form (simple tridia-
gonal for scalar equations, 4 = 1). The block-tridiagonal matrix structure

emerges from rewriting Eq. (27a) as

a"vF by ey’ =" (32)
il (I Ui+ i
where a, b, ¢ are square matrices and d is a column vector, each containing
only n-level quantities. When applied at successive grid points, Eq. (32)
generates a block-tridiagonal system of equations for w* which, after
appropriate treatment of boundary conditions, can be solved efficiently
using standard block-elimination methods as discussed by Isaacson and
Keller (Ref. 72, p. 58). The solution procedure for Egs. (27b,c) is
analogous to that just described for Eq. (27a). It is worth noting that
the spatial difference parameter o can be varied with i or even term by
term. For example, an "upwind difference" formula can be obtained if « is
chosen as 1 or -1 depending on the sign of the elements of Fl; however, the
formal accuracy of the method would then be reduced to first order.
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Computing requirements. - Various block-elimination algorithms can be
devised for solution of equations with block-banded matrix structures (cf.,
Isaacson & Keller, Ref. 72). Such algoritlms can be derived using variants
of Caussian elimination for a banded matrix, but with the square submatrix
elements of the banded matrix processed using matrix algebra. Thus, opera-
tions involving matrix subelements are not assumed to commute, and division
by a matrix subelement is accomplished by computing the inverse and multi-
plying. Following this procedure, McDonald and Briley (Ref. 40) have
developed an algorithm for block-tridiagonal systems arising from the second-
order difference formulas, Eq. (29). The algorithm reguires only one
inverse per grid point. A standard operation count (scalar multiplications
and divisions) has been performed for systems with L x L block elements and
N diagonal block elements, i.e., L coupled equations along N grid points.
The block-tridiagonal scheme requires (3N-2) (L3 + I2) operations, the same
as the matrix factorization scheme of Isaacson and Keller (Ref. 72).
Assuming there are N grid points in each coordinate direction, the total
number of operations for a single time step is obtained from the operation
count for solution of one block-banded system by multiplying by 2N and 3N2
for two and three dimensions, respectively.

For comparison, it is noted that in the case of the Navier-Stokes
equations, merely evaluating the right-hand side of Eq. (27a), which would
be a minimum requirement for a one-step explicit scheme, requires 302 N
operations for a 3-point difference formula.

In view of the many factors involved, it is difficult to evaluate
precisely or with any generality the overall computational efficiency of
the MINT method relative to various other methods. However, the foregoing
operational counts show that the effort expended to solve the implicit
difference equations by block-elimination is not excessive compared with
that necessary simply to evaluate the differenced Navier-Stokes equations,
let alone the various other bookkeeping tasks present in most large-scale
computer programs for fluid dynamics problems. In the solutions presented
here, the solution of the block-tridiagonal systems using double precision
arithmetic required only about twenty percent of the total computer time
per time step.

Artificial dissipation. - In computing solutions for high Reynolds
number flows, it is often necessary to add a form of artificial viscosity
or dissipation. Artificial dissipation in some form is often useful in
practical calculations to stabilize the overall method when function boundary
conditions are applied, when coarse mesh spacing is used, or in the presence
of discontinuities. The need for artificial dissipation arises in certain
instances when centered spatial difference approximations are used for first
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derivative terms. The use of artificial dissipation is thus a matter of
spatial differencing technique, and it is commonly employed in either
explicit or inherent form, and in both explicit and implicit difference
schemes.

One possible dissipation term in common use is based on an observation
(e.g., Roache, Ref. 73, p. 162) that for a linear model problem representing
a one-dimensional balance of convection and diffusion terms, solutions
obtained using central differences for the convection term are well behaved
provided the mesh Reynolds number ReAx, = Iuml Axy, Re is < 2, but that
qualitative inaccuracies (associated with boundary conditions) occur for
ReAxy > 2. This suggests the use of an artificial viscosity term of the
form emD§¢, where

_(lumlBxm ReAxm_ 1] Re > 2
m 2 Re Re 2 A"m (33)
R <
0 eAxm 2

to ensure that the local effective mesh Reynolds number is no greater than
two. The simplified analysis presented here was extended for the generalized
tensor equations presented previously and the resulting dissipation terms
were added to the continuity and momentum equations.

A second type of artificial damping which is a fourth-order dissipation
term has been suggested by Beam and Warming (Ref. 39) to damp small wave-
length disturbances. 1In the present formulation an explicit fourth-order
damping term was added directly to the fundamental difference scheme,

Eq. (25a), as follows:

(A+ At L)yl = At [."D(¢n)+ Sn]+ § (Axm)4 wm 3¢

m=i 8 oxg

n

(34)

Note that the dissipative coefficients Wy implicitly contain the time step
At; however, since the dissipation term is treated explicitly (to retain the
block tridiagonal matrix structure), a linear von Neumann stability analysis
shows that the coefficients wp, must be in the range of 0 s w, <1 for
stability (Ref. 39). This condition actually implies a limit on the
maximum permissible time step which may be taken, however, in the present
formulation this was not a restriction. The advantage of the fourth-
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derivative dissipation added in Eq. (34) over the more conventional
artificial viscosity formulation, Eq. (33), is that the formal accuracy of
the method is not altered, whereas Eq. (33) reduces the formal accuracy to
first order when ReAx, > 2. Strictly speaking, the overall method is
second-order accurate since ReAy - O as the mesh is.refined. It should
be remembered, however, that such asymptotic truncation error estimates are
meaningful only for sufficiently small mesh size; whereas in practical
calculations of complex flows mesh resolution capabilities are almost
always strained.
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RESULTS

Solution of the Heat Conduction Equation

Solutions of the heat conduction equation were the first test cases
of the MINT code applied in its general tensor form. In vector notation
the equation is given by

V2 ¢ =ad/ot (35)

which can be expressed in tensor form as

| 0 ( ij o¢ ~f—_)
vg ay! dy! /
N (36) yi represents the e general coordinate and g.. are the

¢ *Fficients of the metric tensor. It should be noted thatJEq. (36) is not
a trivial test case in as much as the equation contains both metric
coefficients and their derivatives.

Two cases were considered. In both cases the solution domain was
the region interior to the closed curve formed by an elliptical arc, the
X-axis and an arc generated by points with an equal normal distance from the
elliptical arc. An illustration is shown in Fig. 2. In both cases the
coordinate system was generated by the two arcs consisting of the elliptical
arc and the outer arc. The elliptical arc was given as raw geometric data
and then fit with a parametric curve developed in a piecewise fashion. The
fitting process used least squares so thal eventually measured data could be
used. The parameterization for the outer arc was taken as its arc length;
for the elliptical arc, it was imposed from the outer arc under the condition
that lines joining points of like parameter values are normal to each arc.
Given this parameterization, the coordinate transformation is given in
Eq. (14).

In the first test case initial conditions were specified such that all
boundary points were equal to zero and all interior points were equal to
unity. The zero values on the boundary were held as boundary conditions.

The solution then decayed to zero throughout the domain as the equation
was marched in time. In the second case zero derivative conditions were
applied at the inner and outer curved boundaries. The segments of the x-axis
were set at zero and unity, respectively. Initially all interior points
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were set to unity and the solution was then allowed to develop in time.

At large times the solution satisfied the condition.V2¢ = 0 as it should.
These solutions of the heat conduction equation do not represent as
stringent a test of the coordinate system as would a solution of the Navier-
Stokes equations. However, the heat conduction equation is not trivial

and the solutions obtained demonstrate. the potential of the current
coordinate system. A feature of this system is that it does not require
analytically specified curves as boundaries. Solutions of the Navier-Stokes
equations also were attempted in this same coordinate system which was
generated from raw geometric data; however, in this case successful solutions
were not obtained.

The source of the difficulty in the Navier-Stokes case was the appear-
ance of second derivatives of the metric coefficients. In contrast the heat
conduction equation only contained first derivatives of the metric coeffi-
cients. When the boundary was expressed as a non-analytically specified
curve, first derivatives of the metric coefficients were sufficiently
smooth to obtain reasonable solutions, however, second derivatives were not.

Present efforts now are aimed at resolving this problem; two approaches
are being taken. In the first approach the equations are being reformulated
in a manner which does not require second derivatives of the metric coeffi-
cients. 1In the second approach the curve fitting routines are being refined
further so as to produce sufficiently smooth derivatives to allow a Navier-
Stokes solution.

Flow About a Circular Cylinder

The first Navier-Stokes solution calculated under the present effort
was the flow about a circular cylinder at Reynolds number (based upon
diameter) equal to forty. This case was chosen since it represents a
relatively simple geometry and since both experimental data and other
solutions were available for comparison. A comprehensive list of references
on both experimental work and numerical calculations is given by Ref. 30.

The dependent variables used for this calculation were the density and
the contravariant components of the velocity, vl and v2. The calculation
was initiated by specifying the inviscid solution throughout the flow field
and then imposing a zero velocity condition on wall boundary points. The
velocity was set equal to zero and the inviscid transverse momentum equation
(dp/on = 0) was solved at the cylinder surface. The latter boundary condi-
tion is required to determine a value of density at the wall grid point and,
in the present case of constant total temperature, this condition is
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equivalent to 3p/9n = 0. It should be noted that the condition of constant
total temperature and zero slip velocity implies 3T/%n = 0 at the wall. At
the outer boundary, velocity and density were set to their inviscid values
over the upstream three quarters of the outer boundary (0 = © =< 3n/L). First
derivatives of the physical velocity components were set to zero and the
pressure was set to its inviscid value over the remainder of the far field
boundary. The far field boundary was taken to be fifteen diameters from the
cylinder center (A = 29). 1In this computation the only artificial viscosity
term added was that based on the mesh Reynolds number criterion, Eq. (33).
The present predictions were obtained with a 35 x 35 mesh (including boundary
points), and the coordinate system employed is shown in Figs. (3a,b). A
special case of Eq. (16) is the Roberts boundary layer transformation

(Ref. 78) which is obtained by setting m = 0, With a damping factor D = 2.7,
this transformation was used to concentrate grid points both near the wall and
near the front and rear stagnation points as shown in Fig. 3. The loopwise
distribution was computed by a rigid translation of Eq. (16) with m = O.

The result was the distribution 0(6) = tanh (26D/w -D)/tanh D where D = 1.5.
The computation time for the present nonorthogonal form of the governing
equations, Egs. (7, 9—13), is approximately 5.9 x lO‘h CPU minutes per grid
point per time step on the UNIVAC 1110, and approximately 80 time steps were
required to obtain the steady state solution.

The present prediction of the surface pressure along with predictions
of Son and Hanratty (Ref. T4) and Kawaguti (Ref. T5) are shown in Fig. k.
The Kawaguti pressure prediction was given relative to the predicted rear
stagnation point pressure and in this figure the Kawaguti rear stagnation
point pressure was arbitrarily set at the Son and Hanratty value. The
predictions of Refs. 74 and 75 both were obtained from solutions of the
incompressible Navier-Stokes equations. The present solution is obtained
from the compressible equations at a Mach number equal to 0.2. As shown in
Fig. 4 all three solutions are in reasonable agreement with each other.
The discrepancies may be due to the different numerical methods or the effect
of compressibility. Another possible source of discrepancy in the leading
edge region is the application of the inviscid transverse momentum equation
as a wall boundary condition in the present formulation. An improved wall
boundary condition is probably required for proper representation of both
the leading edge stagnation region and separated flow regions. It is
believed that a one-sided difference representation of the normal momentum
equation at the wall is a more realistic boundary condition, since
this boundary condition allows a normal pressure gradient consistent
with the momentum balance in the near wall region. The centerline velocity
prediction is compared to the data of Coutanceau and Bouard (Ref. 30)
and the predictions of Kawaguti (Ref. T75), Apelt (Ref. T6) and Nieuwstadt
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and Keller (Ref. 77) in Fig. 5. Again the agreement between data and all
analyses is good. Predicted streamline locations are shown in Fig. 6 and
streamwise velocity profiles at several azimuthal locations are shown in
Fig. 7. A comparison of Figs. 5 and 6 shows a discrepancy in the wake
length, however, this discrepancy represents less than one half the radial
grid spacing at the near wake closure point. The values of the wake length
given by other authors (Refs. 30, 75, 76, 77) are higher than the present
prediction, however, the present results were obtained with a relatively
coarse mesh. Also, use of the contravariant velocity components, which was
subsequently abandoned in the airfoil computations, is believed to increase
the truncation error in the numerical predictions.

Flow About a Joukowskli Airfoil

The second Navier-Stokes solution calculated was the flow about an
11 percent thick Joukowski airfoil at zero angle of attack and a Reynolds
number of eighty (80) based on the airfoil chord length. The case repre-
sents a much more severe test of the MINT tensor code because of the signif-
icant variation in the metric tensor coefficients throughout the computa~
tional field. The coordinate systems for the Joukowski airfoil computations
presented herein were obtained using the analytic Joukowski transformation
in conjunction with Eq. (16) (for m = O and D = 3.3) in the pseudoradial
coordinate direction. No redistribution of mesh points in the aximuthal
(loopwise) direction was required for the calculations presented. The
Joukowski airfoil results at Re = 80 were obtained using a 41 x 22 mesh
(including boundary points) with the far field boundary taken to be approxi-
mately fifteen chord lengths from the airfoil. The coordinate system
employed is shown in Figs. (8a,b).

The dependent variables employed in this calculation were the density
and the physical velocity components, ug and u,. The calculation was
initiated by specifying the inviscid solution throughout the flow field and
then imposing a zero velocity condition on wall boundary points. The
velocity was set equal to zero and the inviscid transverse momentum equation
(9p/8n = 0) was solved at the airfoil surface. At the outer boundary,
velocity and density were set to their inviscid values over the upstream
three quarters of the cuter boundary. First derivatives of the velocity
components were set to zero and the pressure was set to its inviscid value
over the remainder of the far field boundary. In this computation, both
the fourth-order damping, (Eq. 34), and the artificial viscosity term based
on the mesh Reynolds number criterion, (Eq. 33), were added to the governing
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equations, because it was found that the conventional dissipation term alone
(Eq. 33) did not prevent spatial oscillations from occurring. The relatively
coarse grid employed in'the pseudo-radial direction (22 points) led to some
difficulties at the far field boundaries where the velocity components were
specified. Specifically, the computed velocities near the boundary did not
approach the inviscid values as uniformly as desired.

The predicted airfoil surface pressure distribution is shown in Fig. 9
and computed streamline locations are shown in Fig. 10. The computed stream-
wise and transverse velocity profiles are shown in Figs. 11 and 12, respect-
ively, at the azimuthal locations defined by the nondimensional surface arc
length coordinate, sl/slma (see Fig. 8). The computed centerline velocity
profile downstream of the %railing edge is shown in Fig. 13. These predic-
tions generally exhibit qualitatively reasonable behavior, except in the
vicinity of the airfoil leading edge where the pressure seems to be some-
what higher than expected. This behavior might be attributable to the
application wall boundary condition 8p/8n = 0, which is physically incorrect
in the leading edge region.

Finally, the Navier-Stokes calculation for the flow about an 11 percent
thick Joukowski airfoil at zero angle of attack and a Reynolds number of 1000
was initiated to demonstrate the high Reynolds number capability of the MINT
code. The Joukowski airfoil results at Rez = 1000 were obtained using a
41 x 30 mesh (including boundary points) with the far field boundary taken
to be approximately ten chord lengths from the airfoil. The coordinate
system employed is similar to that shown in Fig. 8, but with a higher
concentration of grid points near the airfoil surface. This calculation
was begun by applying approximate boundary layer corrections to the inviscid
velocity field. Again the velocity was set equal to zero and the inviscid
transverse momentum equation (8p/8n = 0) was solved at the airfoil surface.
This calculation was not run to convergence because of time and funding
constraints. The surface pressure prediction is shown in Fig. 14, the
streamline pattern is shown in Fig. 15 and the computed streamwise velocity
profiles at several azimuthal locations are shown in Fig. 16 for this case.
Again, these results appear to be qualitatively reasonable although the flow
over the airfoil surface had not yet separated at the time of these plots.
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CONCLUSIONS

Two major areas have been investigated under the present effort. The
first area concentrates upon the development of a coordinate system for
calculating the flow about an isoclated airfoil. The second area concentrates
upon the flow field calculation itself.

A fundamental requirement for any airfoil flow calculation procedure is
the generation of an efficient and accurate system of coordinates. The
efficiency is needed if eventual applications to three-dimensional and/or
time-dependent geometries are contemplated; the accuracy is needed to
insure the fundamental integrity of the overall algorithm and to control its
error growth.

Under the present effort the process of coordinate generation for the
entire class of airfoil geometries has progressed in an orderly fashion
leading to a solution of the heat conduction equation in a coordinate
system generated from a discrete specification of boundary points. The
major problem preventing a solution of the Navier-Stokes equations with
this coordinate generation procedure appears to be a lack of smoothness in
the higher derivatives of the metric coefficients. Under investigation are
both an alternate form of the Navier-Stokes equations requiring less smooth-
ness in metric data and a new coordinate generating technique with stronger
smoothness properties.

The second portion of the current effort has successfully solved the
Navier-Stokes equations about isolated bodies. Predictions for low Reynolds
number flow about a cylinder are in good agreement with both experimental
data and other numerical predictions. Calculations of the flow field about
a Joukowski airfoil at Rez = 80 are qualitatively reasonable; at Rez = 1000
no adverse high Reynolds number effects are observed.

Several problems which have arisen in the course of the present effort
require further work. These include a thorough investigation of both wall
and far field boundary conditions. As mentioned previously a one-sided
difference representation of the normal momentum equation at the wall
should be considered as a boundary condition for determining the wall value
of density. In the far field, solution of the Euler equations over a portion
of the outer computational boundary may alleviate the numerical difficulties
encountered in that region of the flow field, without resorting to mesh
refinement in the inviscid portion of the flow field.
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Figure 1.—A coordinate system for flows with a narrow wake.
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Figure 2. — Computational domain for test problems with the heat equation.
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Figure 3e. - Circular cylinder coordinate system, ReD = 40; near field (radial locations 1 through 17).
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Figure 3b. - Circular cylinder coordinate system, Re

D= 40; far field (radial locations 17 through 35).
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Figure 6. - Streamlines about circular cylinder, Re_ = LO.
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Figure 8a. - Joukowski airfoil coordinate system, Rgz = 80; near field (pseudo radial locations 1 through 12).
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Figure 8b. - Joukowski airfoil coordinate system, Reﬂ = 80; far field (pseudo-radial locations 12 through 22).
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Figure 10. - Streamlines about Joukowski airfoil, R

)

= 80.
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Figure 16, - Streamwise velocity profiles for Joukowski airfoil, Re = 1000
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